Abstract

The thermal decomposition behavior of ammonium perchlorate (AP) directly influences the combustion performance of the composite solid propellants (CSPs). To enhance the effective thermal decomposition of AP, a highly active catalyst was prepared by entrapping Ni nanoparticles (NPs) inside three-dimensional hierarchically ordered porous carbon (3D HOPC). The obtained HOPC/Ni nanohybrid possessed interconnected porous structures, a high specific surface area (996 m2 g-1), large pore volume (1.43 cm3 g-1), and highly dispersed Ni NPs. To investigate the catalytic activity of the HOPC/Ni nanohybrid for AP thermal decomposition, an AP/HOPC/Ni nanocomposite was synthesized by homogeneously confining AP nanocrystals into the HOPC/Ni nanohybrid to form a high contact area. Because of the synergistic effect between the 3D HOPC and Ni NPs as well as the size effect of the AP nanocrystals, the HOPC/Ni nanohybrid decreased the high-temperature decomposition (HTD) peak temperature of AP by 136.1 °C and increased the heat release from 371 to 2681 J g-1, demonstrating better catalytic activity than the individual 3D HOPC and Ni NPs components. It can be foreseen that the HOPC/Ni nanohybrid may be a promising, highly active catalyst that meets the development needs of AP-based CSPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call