Abstract

Highly active catalyst with excellent ability to reduce the high-temperature decomposition (HTD) temperature and increase the apparent specific heat releases of ammonium perchlorate (AP) is an urgent requirement for the development of composite solid propellants. To this end, three-dimensional hierarchically ordered porous carbon (3D HOPC)/Fe2O3 composite scaffolds with high BET surface area (964–1697 m2/g) and large pore volume (1.40–2.36 cm3/g) are synthesized for higher catalytic activity. The entrapment of Fe2O3 nanoparticles (3.8–10.6 nm) inside 3D HOPC ensures their high dispersion and stability during the catalysis, and their size and content are readily tunable by adjusting the iron source concentration. The catalytic activity of HOPC/Fe2O3 composite scaffolds is investigated through synthesizing AP/HOPC/Fe2O3 nanocomposites, in which AP nanocrystals are homogeneously confined. Owing to the synergistic effect between 3D HOPC and Fe2O3 nanoparticles, HOPC/Fe2O3 composite scaffolds exhibit outstanding catalytic activity for AP thermal decomposition in decreasing the HTD peak temperature from 440.9 to 280.5 °C, lowering the activation energy from 176.4 to 132.2 kJ/mol, and increasing the heat release from 371 to 2114 J/g. This work constructs a highly active catalyst configuration by entrapping nano transition metal oxides inside carbon scaffolds, which has broad application prospects in AP-based composite solid propellants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.