Abstract

Simple SummaryHedgehogs, being insectivores with slow metabolisms, are quite sensitive to temperature and food availability. As a consequence, their ranges have oscillated in relation to past climate changes. Species that have evolved in different regions, but their ranges have shifted and overlapped subsequently, often represent intense competitors as a result of ecological similarities. The present study focuses on this phenomenon in the contact zone in central Europe and adjacent regions, using genetic determination of species and description of size and shape of skull, the morphological structure mirroring many selection pressures related to ecology. While animals living outside of the contact zone show marked differences between the two species, individuals within the contact zone are more alike with a smaller skull size and a convergent jawbone shape. Changes in skull size can be related to inter-species competition and also facilitated by selection pressure, mediated by overpopulated medium-sized predators such as foxes or badgers. Since the function of the lower jaw is mainly connected to feeding, we hypothesize that this pattern is due to the selection to size and shape related to competition for food resources. The present study helps to describe general patterns related to species formation, as well as species responses to anthropogenic environmental changes.Hedgehogs, as medium-sized plantigrade insectivores with low basal metabolic rates and related defensive anti-predator strategies, are quite sensitive to temperature and ecosystem productivity. Their ranges therefore changed dramatically due to Pleistocene climate oscillations, resulting in allopatric speciation and the subsequent formation of secondary contact zones. Such interactions between closely related species are known to generate strong evolutionary forces responsible for niche differentiation. In this connection, here, we detail the results of research on the phenotypic evolution in the two species of hedgehog present in central Europe, as based on genetics and geometric morphometrics in samples along a longitudinal transect that includes the contact zone between the species. While in allopatry, Erinaceus europaeus is found to have a larger skull than E. roumanicus and distinct cranial and mandibular shapes; the members of the two species in sympatry are smaller and more similar to each other, with a convergent shape of the mandible. The relevant data fail to reveal any major role for either hybridisation or clinal variation. We, therefore, hypothesise that competitive pressure exerted on the studied species does not generate divergent selection sufficient for divergent character displacement to evolve, instead giving rise to convergent selection in the face of resource limitation in the direction of smaller skull size. Considering the multi-factorial constraints present in the relevant adaptive landscape, reduction in size could also be facilitated by predator pressure in ecosystems characterised by mesopredator release and other anthropogenic factors. As the function of the animals’ lower jaw is mainly connected with feeding (in contrast to the cranium whose functions are obviously more complex), we interpret the similarity in shape as reflecting local adaptations to overlapping dietary resources in the two species and hence as convergent character displacement.

Highlights

  • Hedgehogs from the Western Palearctic play a key role as model organisms in the field of phylogeography and speciation studies (e.g., [1,2,3])

  • There is a divergence of phenotypic traits in the closely related species which is an important source of information about adaptive processes, i.a. indicating nascent niche diversification [6]

  • Related visual determinations of the species proved consistent with genetic assignment of animals within the sympatric population

Read more

Summary

Introduction

Hedgehogs from the Western Palearctic play a key role as model organisms in the field of phylogeography and speciation studies (e.g., [1,2,3]). The two species form a secondary contact zone in central Europe (Italy, Austria, Czech Republic and Poland), with a relatively broad area of sympatry in the center of the zone (Czech Republic), possibly in relation to Neolithic deforestation [3]. This region provides conditions suitable for studying species interactions in relation to genomic and ecological niche-differentiation in the context of anthropogenic environmental changes. The integration of originating species into ecological networks varies during the speciation process, in line with an increasing role for competition with the sister species that may facilitate the niche differentiation [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.