Abstract

FLAIR images are highly sensitive for SAH. However, CSF flow artifacts caused by conventional FLAIR can produce false-positive results. Here, we compare 3D and 3D FLAIR sequences, focusing on their potential for containing these artifacts and their sensitivity and specificity for detection of SAHs. We evaluated the following 4 FLAIR sequences: 1) 2D FLAIR at 1.5T, 2) 2D FLAIR, 3) 2D PROPELLER-FLAIR, and 4) 3D Cube-FLAIR at 3T. All sequences were performed in 5 healthy volunteers; sequences 2 and 4 were also performed under routine conditions in 10 patients with focal epilepsy and in 10 patients with SAH. Two neuroradiologists independently conducted the analysis. The presence of flow artifacts in the ventricles and cisterns of healthy volunteers and patients with epilepsy was evaluated and scored on a 4-point scale. Mean values were calculated and compared by using paired t tests. Sensitivity and specificity for SAH detection in sequences 2 and 4 were determined. Cube-FLAIR showed almost no CSF artifacts in the volunteers and the patients with epilepsy; therefore, it was superior to any other FLAIR (P < .001). Sensitivity and specificity of SAH detection by 3T FLAIR were 58.3% and 89.4%, respectively, whereas Cube-FLAIR had a sensitivity of 95% and a specificity of 100%. Cube-FLAIR allows FLAIR imaging with almost no CSF artifacts and is, thus, particularly useful for SAH detection.

Highlights

  • MethodsWe evaluated the following 4 FLAIR sequences: 1) 2D FLAIR at 1.5T, 2) 2D FLAIR, 3) 2D PROPELLER-FLAIR, and 4) 3D Cube-FLAIR at 3T

  • AND PURPOSE: FLAIR images are highly sensitive for SAH

  • Cube-FLAIR allows FLAIR imaging with almost no CSF artifacts and is, useful for SAH detection

Read more

Summary

Methods

We evaluated the following 4 FLAIR sequences: 1) 2D FLAIR at 1.5T, 2) 2D FLAIR, 3) 2D PROPELLER-FLAIR, and 4) 3D Cube-FLAIR at 3T. All sequences were performed in 5 healthy volunteers; sequences 2 and 4 were performed under routine conditions in 10 patients with focal epilepsy and in 10 patients with SAH. TR, TE, and TI of the 4 sequences were optimized before the beginning of the study to obtain a good and comparable gray and white matter contrast. Parallel imaging was applied in the acquisition of the Cube-FLAIR sequence to reduce scanning time. Cube-FLAIR is a 3D fast-spin-echo sequence with inversion recovery preparation that uses variable refocusing flip angles to establish a pseudo-steady-state condition in which relaxation is counterbalanced. Relaxation counterbalancing results in reduced or even halted signal intensity decay during long echo trains and lacks image blurring.[16] Cube-FLAIR isotropic voxel size allows arbitrary multiplanar reconstructions of the sagittal source images

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.