Abstract
Although 3D FLAIR imaging visualizes detailed structures of the brain stem, it has not been used to evaluate its normal anatomy. The purpose of this study was to evaluate whether 3D FLAIR images can provide more detailed anatomic information of the brain stem than 2D FLAIR and 2D T2WI. We prospectively evaluated MR images in 10 healthy volunteers. 3D and 2D FLAIR images, 2D T2WI, and DTI were obtained on a 3T MR imaging scanner. A VISTA technique was used for 3D FLAIR imaging. White matter tracts and nuclei of the brain stem were determined on 3D and 2D FLAIR images and 2D T2WI by referring to anatomic atlases and DTI color maps. The subjective assessment of the visibility by using a 4-point grading system and the contrast ratio of the structures on 3D and 2D FLAIR images and 2D T2WI were evaluated. The visibility of the SCP and MCP, DSCP, CST, and CTT was higher on 3D FLAIR images than on 2D T2WI and 2D FLAIR images. The contrast ratio for the CST, SCP, MCP, DSCP, and CTT was significantly different on 3D FLAIR images and 2D T2WI and on 3D FLAIR and 2D FLAIR images; there was no significant difference in contrast ratio for the SCP at the pons on 3D FLAIR and 2D T2WI. 3D FLAIR images provide detailed anatomic information of the brain stem that cannot be obtained on 2D T2WI and 2D FLAIR images.
Highlights
AND PURPOSE: 3D FLAIR imaging visualizes detailed structures of the brain stem, it has not been used to evaluate its normal anatomy
The visibility of the SCP and MCP, DSCP, CST, and CTT was higher on 3D FLAIR images than on 2D T2WI and 2D FLAIR images
The contrast ratio for the CST, SCP, MCP, DSCP, and CTT was significantly different on 3D FLAIR images and 2D T2WI and on 3D FLAIR and 2D FLAIR images; there was no significant difference in contrast ratio for the SCP at the pons on 3D FLAIR and 2D T2WI
Summary
The purpose of this study was to evaluate whether 3D FLAIR images can provide more detailed anatomic information of the brain stem than 2D FLAIR and 2D T2WI. The purpose of this study was to evaluate the brain stem anatomy on 3D FLAIR images to identify brain stem structures, including the nuclei and white matter tracts and to compare these with findings obtained by DTI, 2D FLAIR, and 2D TSE T2WI
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.