Abstract

Flower-like TiO2 nanostructures were obtained by chemical oxidation of Ti foil using H2O2 combined with subsequent annealing. This paper offers an analysis of the phase transformation of 3D flower-like titanium dioxide nanostructures. The role of the annealing atmosphere, sample thickness, grain shape, and nanoflower size are discussed. The nanostructures were examined using SEM, XRD, and Raman spectroscopy. Due to the nature of these two processes, the morphology of these nanomaterials is complex, and is obtained through a reaction involving Ti foil and H2O2 at 80°C. A distinction is made between the layer composed of small grains at the substrate/oxide interface, elongated crystal-like structures, and outer spongle-like film. The annealing parameters, such as atmosphere (air or argon) and temperature (450 or 600 °C), affect phase composition. The photoelectrochemical performance of the anode based on flower-like TiO2 has been shown. The thickness and phase composition of the anodes are factors that strongly affect the photocurrent. The multiphase heterojunctions proposed for 3D flower-like TiO2 photoanodes in photoelectrochemical (PEC) cells suppose that the conduction band of anatase should be above rutile. The highest photoelectrochemical performance was obtained for a photoanode composed of 20–40% anatase and an associated thickness of 0.75–1.5 µm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.