Abstract
This research presents the damage mechanism of a historical masonry architecture induced by differential settlement based on 3D FE analysis. The purpose of the study was to investigate the behavior fully-saturated soft clays subjected to self-weight loading from an old masonry structure of Abu Serga church which is the oldest church in Egypt dating back to the fifth century A.D and located in old Cairo area in Cairo city. The church gains its high prestige to having been constructed upon the Holy crypt of the Holy Family where they stayed during their sojourn in Egypt. The main objective of the present study is too accurately record and analysis the geotechnical problems and induced structural failure mechanisms observed and calculated in the field, experimental and numerical studies. The land area is also susceptible to floods. Numerical analysis for such geotechnical problems is largely expected to contribute to the conservation of cultural heritages. The present research presents an attempt and pilot study to design the PLAXIS 3D FE model to simulate ground problems, and to distort and analyze the stress of the complex structure of the Abu Serga church, which is loaded on plane level. Plastic modeling or Mohr–Coulomb model in advanced soil was used during the various stages of numerical analysis. Results are recorded and discussed with respect to stress and volumetric behavior of soil. Finally, the study represents the design studies and implementation of the inter-organizational retrofitting intervention and strengthening project for the oldest Coptic church in Egypt.
Highlights
Historical monuments are invariably exposed to the influence of the geological environment
The results of the numerical analysis of church are shown as originally designed that some of the surface subsidence occurred during its construction on thick layers of soft clay (6 m) and because of the drainage or dewatering project in 2000
The results indicated that the overstress state is beyond the elastic regime
Summary
Historical monuments are invariably exposed to the influence of the geological environment. Given the lifespan of such structures, several dynamic geological processes (weathering/erosion, surface movements and earthquakes) usually have a dramatic impact on the integrity of the monuments. The protection of monuments requires special approaches in terms of adaptation of the engineering. The significant cost and implicit long-term effectiveness of engineering schemes for the protection of historical monuments necessitates integrated approaches requiring on-going validation of the design. The co-operation between the designer and the contractor during construction and long-term performance monitoring are key components for the success of such undertakings. Structural damage to the architectural heritage is often caused by the displacement of the earth’s soil, its differential settlement, its rotation, or any other effect of the interaction between the structure and the soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.