Abstract

The stress wave propagations and interface stress distributions in the single-lap adhesive joint under impact tensile loads are analyzed using the three-dimensional finite element method (3D-FEM) taking into account the strain rate sensitive of the adhesive using Cowper–Symonds constitutive model. It is found that the rupture of the joint initiates near the middle area of the edges of the interfaces along the width direction. In addition, the effects of Young's modulus of the adherend, the overlap length and the thickness of the adhesive layer, and the initial impact velocity of the impacted mass on the stress wave propagations and the interface stress distributions are examined. The characteristics are compared with those of the joint under static loads, which show the different properties. Furthermore, experiments are also carried out for measuring the strain responses and the joint strength. A fairly good agreement is observed between the numerical and the measured results. The strength of the single-lap adhesive joint, which is described using impact energy, is obtained between 5.439 and 5.620 J for the present joint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call