Abstract

Cold rotary forging is an advanced but much complex incremental metal forming process with multi-factors coupling interactive effects. Previous researches concentrated mainly on studying the cold rotary forging process of the cylindrical workpiece based on the analytical and experimental methods. In the current work, in order to better investigate and understand the cold rotary forging process of the ring workpiece, a 3D elastic–plastic dynamic explicit FE model of the process is developed under the ABAQUS software environment. Some key technologies of modeling methods are dealt with reasonably and some key forming conditions are also determined properly. The reliability of the proposed 3D FE model is verified experimentally. Through simulation, the distributions and histories of different field-variables such as stress, strain and force and power parameters are investigated in detail. The research results provide valuable guidelines for better understanding the deformation characteristics of cold rotary forging of the ring workpiece. Furthermore, the modeling methods presented in this paper have the general significance to study other rotary forging processes, such as the hot rotary forging process, the rotary forging process of workpiece with complex profile and so on.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call