Abstract
The fluid dynamic behavior within a pixel of an electrowetting display (EWD) is thoroughly investigated through a 3D simulation. By coupling the electrohydrodynamic (EHD) force deduced from the Maxwell stress tensor with the laminar phase field of the oil–water dual phase, the complete switch processes of an EWD, including the break-up and the electrowetting stages in the switch-on process (with voltage) and the oil spreading in the switch-off process (without voltage), are successfully simulated. By considering the factor of the change in the apparent contact angle at the contact line, the electro–optic performance obtained from the simulation is found to agree well with its corresponding experiment. The proposed model is used to parametrically predict the effect of interfacial (e.g. contact angle of grid) and geometric (e.g. oil thickness and pixel size) properties on the defects of an EWD, such as oil dewetting patterns, oil overflow, and oil non-recovery. With the help of the defect analysis, a highly stable EWD is both experimentally realized and numerically analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.