Abstract
As an emerging class of biometrics, human ear has drawn significant attention in recent years. In this paper, we propose a novel 3D ear shape matching and recognition system. First, we propose a novel method for computing saliency value of each point on 3D ear point clouds, which is based on the Gaussian-weighted average of the mean curvature and can be used to sort the keypoints accordingly. Then we propose the optimal selection of the salient key points using the Poisson Disk Sampling. Finally, we fit a surface to the neighborhood of each salient keypoint using the quadratic principal manifold method, establishing the local feature descriptor of each salient keypoint. The experimental results on ear shape matching show that, compared with other similar methods, the proposed system has higher approximation precision on shape feature detection and higher matching accuracy on the ear recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.