Abstract

Human recognition with biometrics is a rapidly emerging area of computer vision. Compared to other well-known biometric features such as the face, fingerprint, iris, and palmprint, the ear has recently received considerable research attention. The ear recognition system accepts 2D or 3D images as input. Since pose, illumination, and scale all affect 2D ear images, it is evident that they all impact recognition performance; therefore, 3D ear images are employed to address these issues. The geometric shapes of 3D ears are utilized as rich features to improve recognition accuracy. We present recent advances in several areas relevant to 3D ear recognition and provide directions for future research. To the best of our knowledge, no comprehensive review has been conducted on using 3D ear images in human recognition. This review focuses on three primary categories of 3D ear recognition techniques: (1) registration-based recognition, (2) local and global feature-based recognition, and (3) a combination of (1) and (2). Based on the above categorization and publicly available 3D ear datasets, this article reviews existing 3D ear recognition techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.