7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1515/nanoph-2022-0285
Copy DOIJournal: Nanophotonics (Berlin, Germany) | Publication Date: Oct 21, 2022 |
Citations: 78 | License type: CC BY 4.0 |
Based on the 3D Dirac semimetals (DSM) supported tilted double elliptical resonators, the tunable propagation properties of quasi-bound in continuum (BIC) resonance have been investigated in the THz regime, including the effects of rotation angles, DSM Fermi level, and the configuration of resonators. The results manifest that by altering the rotation angle of elliptical resonator, an obvious sharp BIC transmission dip is observed with the Q-factor of more than 60. The DSM Fermi level affects the BIC resonance significantly, a sharp resonant dip is observed if Fermi level is larger than 0.05eV, resulting from the contributions of reflection and absorption. If Fermi level changes in the range of 0.01-0.15eV, the amplitude and frequency modulation depths are 92.75 and 44.99%, respectively. Additionally, with the modified configurations of elliptical resonators, e.g. inserting a dielectric hole into the elliptical resonator, another transmission dip resonance is excited and indicates a red shift with the increase of the permittivity of the dielectric filling material. The results are very helpful to understand the mechanisms of DSM plasmonic structures and develop novel tunable THz devices, such as modulators, filters, and sensors in the future.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.