Abstract
Transition-metal dichalcogenides showing type-II Dirac fermions are emerging as innovative materials for nanoelectronics. However, their excitation spectrum is mostly unexplored yet. By means of high-resolution electron energy loss spectroscopy and density functional theory, here, we identify the collective excitations of type-II Dirac fermions (3D Dirac plasmons) in PtTe_{2} single crystals. The observed plasmon energy in the long-wavelength limit is ∼0.5 eV, which makes PtTe_{2} suitable for near-infrared optoelectronic applications. We also demonstrate that interband transitions between the two Dirac bands in PtTe_{2} give rise to additional excitations at ∼1 and ∼1.4 eV. Our results are crucial to bringing to fruition type-II Dirac semimetals in optoelectronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.