Abstract
CO adsorption on size-controlled Au nanoparticles grown on an h-BN/Rh(111) nanomesh surface has been examined to probe their potential catalytic properties. A combination of high-resolution electron energy loss spectroscopy (HREELS), temperature-programmed desorption (TPD), and density functional theory (DFT) calculations demonstrate that the CO adsorption strength depends heavily on the Au deposition coverage and particle morphology. Particles resulting from low Au coverages deposited at the liquid nitrogen temperature exhibit significantly enhanced CO binding relative to bulk crystalline Au. The resulting CO TPD spectra, and the significantly red-shifted C–O stretching frequency and negative charging of the Au nanoparticles as evidenced by HREELS and DFT, all correspond to those reported for catalytically active Au nanoparticles grown on reactive metal oxides, even though the h-BN/Rh(111) surface is free of carbon, oxygen, or defects. DFT modeling further suggests that the enhanced CO adsorption occurs ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.