Abstract
Failures induced by either instability (elastic buckling) or green strength (plastic collapse) mechanisms have been commonly encountered in 3D concrete printed (3DCP) structures. In this work, a numerical model of the 3D concrete printing process is implemented to simulate these two failure mechanisms. Early-age mechanical properties of two printable mixes are used as input data for the simulation. The finite element (FE) modelling is then validated by comparison with 3DCP experiments of a hollow cylinder. The numerical analysis program can accurately predict the deformation and its failure modes during the 3D concrete printing process. Besides, the FE model is also used for validating a printed free thin wall. Further, sensitivity and parametric analyses are investigated to unveil the influence of printing process parameters, i.e., printing speed, extrusion width, and different mesh sizes on buildability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.