Abstract

BackgroundThe chick embryo chorioallantoic membrane (CAM) model is well described in human medicine as a cost-effective, easy to perform preclinical oncological model for observing pro- and antiangiogenic response, tumor biology and metastasis. The main objective of this article was to present the modification of the CAM assay in order to evaluate tumor growth from two feline fibrosarcoma cell lines (FFS1, FFS3) and describe their morphological and histopathological features.ResultsThe authors described morphological and histopathological features of two feline fibrosarcoma cell lines (FFS1 and FFS3) grown on the CAM. Tumors from the FFS1 cell line showed high malignancy (grade III), while tumors from the FFS3 cell line were grade II. Proliferation markers (Ki-67 and PCNA) were determined and the positive correlation between PCNA and tumor grade (r = 0.8247; p < 0.001) was demonstrated, as opposed to Ki-67.ConclusionsThe results obtained indicate that PCNA may be helpful to evaluate the tumor grade, better than Ki-67, for feline fibrosarcomas. However, further investigations of proliferation marker, in bigger number of feline spontaneous fibrosarcomas and feline fibrosarcomas grown on the CAM from different cell lines, are needed to confirm these observations.

Highlights

  • The chick embryo chorioallantoic membrane (CAM) model is well described in human medicine as a cost-effective, easy to perform preclinical oncological model for observing pro- and antiangiogenic response, tumor biology and metastasis

  • According to the Couto et al grading system [40], the tumors from FFS1 and FFS3 cell lines were classified as grade III and grade II, respectively (Table 1)

  • The authors demonstrated that two feline fibrosarcoma cell lines (FFS1 and FFS3) can form solid tumors on the CAM and that the CAM model can be successfully used for histopathological analyses in order to expand the knowledge on tumor biology

Read more

Summary

Introduction

The chick embryo chorioallantoic membrane (CAM) model is well described in human medicine as a cost-effective, easy to perform preclinical oncological model for observing pro- and antiangiogenic response, tumor biology and metastasis. In human soft tissue sarcomas and breast cancer Ki-67 proliferating index was positively correlated with histological grade, tumor stage, aggressive behavior and prognosis [28,29,30,31,32,33]. In veterinary medicine such correlation was demonstrated in several types of tumors, e.g. canine soft tissue sarcomas and canine mammary gland tumors [28, 29, 34,35,36,37]. There are only a few reports about the Ki-67 expression in canine and feline fibrosarcomas [39, 40]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call