Abstract

Aerographite is a lightweight 3D nanocarbon network which offers covalent interconnections for polymer nanocomposites (PNCs). Here, the electrical and mechanical properties of neat Aerographite and Aerographite-based PNCs are investigated in detail. The Aerographite filler networks consist of hollow, graphitic tubes of μm-sized diameters and nm-sized wall thicknesses. Different densities of Aerographite in the range of 0.6–13.9 mg/cm3 have been investigated towards their mechanical deformation behavior, electrical conductivities and piezoresistive response under compression. This basic characterization of filler networks is compared to resulting PNCs if the Aerographite is fully embedded in epoxy matrix. It can be shown that the use of 3D interconnected Aerographite results in high electrical conductivities at low filler contents, e.g., 2–8.7 S/m for weight fractions of 0.1–1.2 wt.-%. The neat Aerographite has been characterized in detail by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy techniques. To explain the observed piezoresistive behavior of these 3D nanocarbon-based PNCs, a qualitative micromechanical model is introduced. The model describes the internal graphitic wall slippage and loss of interconnections of the inner electrically conductive networks under load. The piezoresistive response of Aerographite-based PNCs can be directly correlated to the applied outer mechanical loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.