Abstract

Fuel cell technology has received a great deal of attention as a candidate for an alternative power source due to its environmental benefits compared to conventional sources. Flow-field plates are one of the most important components of the Proton Exchange Membrane (PEM) and Direct Methanol (DM) fuel cells technology, which is expected to possess high electrical and thermal conductivity, low hydrogen permeability, and good mechanical performance. In this study, a systematic investigation was carried out to formulate and fabricate electrically conductive polymer composites to be used in production of flow field plates using a simple low temperature, single step moulding process. It focused on the careful selection of both materials and processing methodology. ElectroPhen™ binders, various concentrations of graphite powder and enhanced dispersion agents were employed to make composite plates with high electrical conductivity and satisfactory mechanical performance. Electrical conductivity measurements were carried out using purpose-built in-plane and through-plane electrical conductivity test kits. Flexural tests were carried out to evaluate the mechanical performance of the composites. It has been found that polymer composite flow field plates can attain the electrical conductivity and mechanical performance requirements for commercial fuel cell applications without requiring a high temperature multi-step production process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.