Abstract

Metal-organic frameworks (MOFs) are composed of metal ions and organic ligands with high specific surface areas, controllable porous structures and abundant metal active sites, showing their extraordinary potential in electrochemical sensors. Here, a 3D conductive network structure (C-Co-N@MWCNTs) is designed by anchoring zeolite imidazole frameworks (ZIF-67) onto multi-walled carbon nanotubes (MWCNTs) and carbonizing them. The C-Co-N@MWCNTs exhibit excellent electron conductivity, a porous structure and considerable electrochemical active sites, which can effectively demonstrate high sensitivity and selectivity in the detection of adrenaline (Ad). The Ad sensor exhibited a low detection limit of 6.7 nmol L-1 (S/N = 3) and a wide linear range of 0.02 μmol L-1-1.0 mmol L-1. The developed sensor also displayed high selectivity, good reproducibility and repeatability. The C-Co-N@MWCNTs electrode was further employed in the detection of Ad in a real sample of human serum, suggesting that it is a promising candidate for electrochemical sensing of Ad.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.