Abstract
ReS2 represents a different class of 2D materials, which is characterized by low symmetry having 1D metallic chains within the planes and extremely weak interlayer bonding. Here, the thermal conductivity of single-crystalline ReS2 in a distorted 1T phase is determined at room temperature for the in-plane directions parallel and perpendicular to the Re-chains, and the through-plane direction using time-domain thermoreflectance. ReS2 is prepared in the form of flakes having thicknesses of 60-450 nm by micromechanical exfoliation, and their crystalline orientations are identified by polarized Raman spectroscopy. The in-plane thermal conductivity is higher along the Re-chains, (70 ± 18) W m-1 K-1 , as compared to transverse to the chains, (50 ± 13) W m-1 K-1 . As expected from the weak interlayer bonding, the through-plane thermal conductivity is the lowest observed to date for 2D materials, (0.55 ± 0.07) W m-1 K-1 , resulting in a remarkably high anisotropy of (130 ± 40) and (90 ± 30) for the two in-plane directions. The thermal conductivity and interface thermal conductance of ReS2 are discussed relative to the other 2D materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.