Abstract
PurposeIn response to the issue of traditional algorithms often falling into local minima or failing to find feasible solutions in manipulator path planning. The purpose of this paper is to propose a 3D artificial moment method (3D-AMM) for obstacle avoidance for the robotic arm's end-effector.Design/methodology/approachA new method for constructing temporary attractive points in 3D has been introduced using the vector triple product approach, which generates the attractive moments that attract the end-effector to move toward it. Second, distance weight factorization and spatial projection methods are introduced to improve the solution of repulsive moments in multiobstacle scenarios. Third, a novel motion vector-solving mechanism is proposed to provide nonzero velocity for the end-effector to solve the problem of limiting the solution of the motion vector to a fixed coordinate plane due to dimensionality constraints.FindingsA comparative analysis was conducted between the proposed algorithm and the existing methods, the improved artificial potential field method and the rapidly-random tree method under identical simulation conditions. The results indicate that the 3D-AMM method successfully plans paths with smoother trajectories and reduces the path length by 20.03% to 36.9%. Additionally, the experimental comparison outcomes affirm the feasibility and effectiveness of this method for obstacle avoidance in industrial scenarios.Originality/valueThis paper proposes a 3D-AMM algorithm for manipulator path planning in Cartesian space with multiple obstacles. This method effectively solves the problem of the artificial potential field method easily falling into local minimum points and the low path planning success rate of the rapidly-exploring random tree method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Industrial Robot: the international journal of robotics research and application
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.