Abstract

A novel phenyl-carbazole-based fluorescent sensor (PCBP) has been synthesized and investigated to selectively detect Cu2+ or Co2+. The PCBP molecule exhibits the excellent fluorescent property with the aggregation-induced emission (AIE) effect. In given THF/normal saline (fw = 95%) system, the PCBP sensor shows turn-off fluorescence performance at 462nm with Cu2+ or Co2+. It reveals excellent characteristics of good selectivity, and ultra-high sensitivity, strong anti-interference ability, wide pH applicable range, as well as ultra-fast detection response. The limit of detection (LOD) of the sensor reaches 1.1 × 10-9mol·L-1 and 1.1 × 10-8mol·L-1 for Cu2+ and Co2+ in turn. The formation mechanism of AIE fluorescence of PCBP molecules is attributed to the synergistic effect of intramolecular & intermolecular charge transfer (I&ICT). Meanwhile, the PCBP sensor has good repeatability for the detection of Cu2+, and performs excellent stability and sensitivity for the detection of Cu2+ in real water sample. The PCBP-based fluorescent test strips present reliable capacity for the detection of Cu2+ and Co2++ in aqueous solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call