Abstract

New quinoline based fluorescent sensors 4 and 5 were rationally synthesized that exhibited excellent aggregation induced emission (AIE) in an aqueous medium. High fluorescence emission of sensors was accompanied by a noticeable redshift in their absorption and emission spectra that corresponds to the formation of J-aggregates. An AIE feature of sensors 4 and 5 was used for selective detection of Fe3+ and 4-NP in an aqueous medium that is attributed to the involvement of intermolecular charge transfer (ICT). The interaction mechanism of sensors with Fe3+ and 4-NP was investigated through 1H NMR titration, Jobs plots, dynamic light scattering (DLS), and DFT analysis. The fluorescence quenching response of sensors 4 and 5 displayed distinguished linear behavior with the concentrations of Fe3+ and limits of detection (LOD) were calculated to be 15 and 10 nM, respectively. Further, LOD of sensors 4 and 5 for 4-NP (7.3 and 4.1 nM, respectively) was very low compared to previously reported sensors. Moreover, sensors’ coated test strips were fabricated for solid-supported detection of Fe3+ and 4-NP. Sensors were successfully applied for the detection and quantification of Fe3+ and 4-NP in real water samples. Additionally, sensors were used for the determination of trace amounts of Fe3+ in the human serum sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call