Abstract

BackgroundPediatric central nervous system (CNS) infections are potentially life-threatening and may incur significant morbidity. Identifying a pathogen is important, both in terms of guiding therapeutic management, but also in characterizing prognosis. However, standard care testing by culture, serology, and PCR is often unable to identify a pathogen. We examined use of next generation sequencing (NGS) of cerebrospinal fluid (CSF) in detecting an organism in children with CNS infections.MethodsWe prospectively enrolled children with CSF pleocytosis and suspected CNS infection admitted to 3 tertiary pediatric hospitals. After standard care testing had been performed, the remaining CSF was submitted for analysis by NGS.ResultsWe enrolled 70 subjects over a 12-month recruitment period. A putative organism was isolated from CSF in 24 (34.3%) subjects by any diagnostic modality. NGS of the CSF samples identified a pathogen in 20 (28.6%) subjects. False positive results by NGS were identified in 2 patients. There were no cases in which NGS alone identified a pathogen. In 4 cases, a putative organism was recovered by standard care testing of the CSF, but not by CSF NGS. CSF culture recovered a putative organism in 12 cases (12.1%). A CSF PCR multiplex panel was utilized for 51 subjects. An organism was detected in 15 of these (29.4%). Using a reference composite of standard care testing, we determined the sensitivity and specificity of CSF NGS to be 83.3% (95% CI, 62.6–95.3%) and 91.3% (95% CI, 79.2–97.6%) respectively.ConclusionSequencing of CSF has the potential to rapidly and comprehensively identify infection with a single test. Further studies are needed to determine the optimal use of NGS for diagnosis of CNS infections.Disclosures All Authors: No reported disclosures

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call