Abstract

Abstract Polyunsaturated fatty acids supplementation in late gestation change offspring metabolism; however, their effect is not well known on early gestation in ewes. The objectives of this study were to determine the effect of dietary supplementation with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in pregnant ewes on the concentration of EPA and DHA on fetal liver (FL) and fetal central nervous system (FCNS), and to evaluate the effect of the supplementation with EPA+ DHA on mRNA expression of genes associated with transport and metabolism of fatty acids (FA) in FL and placenta (caruncles and cotyledons). Twelve ewes (4 pens, three per pen) were blocked by pregnancy day. The ewes were assigned during the first 45 d of gestation to diet with an addition of 1.5% (dry matter bases) monounsaturated FA (MUFA) or EPA+DHA. A C-section was conducted at d 45 of gestation to collect FL, FCNS, caruncle and cotyledon. Data were analyzed using a mixed procedure (SAS). For the placenta mRNA concentration, a 2x2 factorial was used considering caruncle and cotyledon as the second main factor. Isomers of C18:1 (t6,8 and t12) increase (P < 0.05) in FL and FCNS with MUFA supplementation, fatty acids C20:3 (n-6), C20:3 (n-3), C22:1, C22:5 and C22:6 increase (P < 0.05) in FL and FCNS with EPA+DHA supplementation. In FL there was a tendency to increase for mRNA expression of FATP-1 (P = 0.10) with EPA+DHA supplementation, while mRNA concentration for LPL was greater (P = 0.02) for MUFA supplementation. In placenta DNMT3b and FFAR-4 showed a significant FA x tissue interaction (P < 0.05). These results suggest that FA supplementation during early gestation alters the FA profile in FL and FCNS and changed mRNA concentration of genes involved in the transport of FA and cell metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call