Abstract
Chromosomal rearrangements have a crucial impact on the proper proceedings of meiosis and can lead by several mechanisms to the production of unbalanced gametes or to the complete arrest of gametes production. To assess the impact of these rearrangements in the early development of pig germ cells, we proposed to generate a library of stem cells from infertile boars that are carriers of chromosomal abnormalities as a new tool for the development of an in vitro differentiation system from pluripotent stem cells to germ cells. We report here the reprogramming of fibroblasts from an azoospermic boar carrying a reciprocal translocation t(Y:14) by integrative or nonintegrative viral overexpression of Oct4, Sox2, Klf4, and c-Myc. The iPS cell lines were characterised for pluripotency, cell cycle, and differentiation potential by conventional methods. Genomic stability was analysed by G-banding karyotype, comparative genomic hybridization, and FISH. The porcine iPS-like cell lines harbored characteristics of ground and naïve pluripotency when cultured in specific media. They expressed several pluripotency genes and harbored an ES-like cell cycle. Nevertheless, contrary to mouse and human iPS, they did not silence the integrated exogenes, leading to a poor differentiation potential. Moreover, cytogenetic analysis revealed a high genomic instability upon passaging, which suggests the development of a population with an increased selective advantage. We characterised the selected duplications and compared them to those previously described in other species. In contrast, the nonintegrative reprogrammation system gives us promising results regarding differentiation potential and genomic stability and will bring new insights into the molecular factors controlling and maintaining pluripotency in the pig species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.