Abstract
Abstract A randomized complete block design was used to evaluate the effects of bismuth subsalicylate (BSS) on in vitro ruminal fermentation with differing concentrations of sulfate. In vitro fermentation consisted of 50 mL of a 4:1 buffer:ruminal fluid inoculum and 0.7 g (pre-dehydrated) of substrate [WW-B Dahl bluestem hay (Bothriochloa bladhii)] incubated for 48 h (39oC). Treatments were arranged as a 3 × 4 factorial with concentration of sulfate (0.2, 2.9, or 5.6 g sulfate/L buffer) and BSS (0.0, 0.165, 0.330, or 0.495% substrate DM) as the main factors. In vitro organic matter digestibility (IVOMD), and CH4, H2S, and total gas production (TGP) were measured. Data were analyzed using the MIXED procedure of SAS with the fixed effects of BSS, sulfate, and their interaction. Incubation day (block) was considered a random effect. The average of 2 bottles within day was considered experimental unit. A BSS × sulfate interaction was observed for TGP (P = 0.040) and H2S production (P < 0.001), where BSS had a larger negative impact on TGP and production of H2S with greater concentrations of sulfate. A linear effect (P < 0.001) of sulfate was observed for CH4 production per gram of incubated OM, where CH4 was decreased as sulfate concentration increased. A quadratic effect of sulfate was observed for IVOMD (P = 0.010) and pH (P = 0.009). Production of H2S linearly decreased (P = 0.001) as BSS concentration increased. The addition of BSS to in vitro incubations did not affect (P > 0.10) any other variables measured. Bismuth subsalicylate does not appear to have negative effects on in vitro fermentation parameters while decreasing H2S production; however, elevated concentrations of sulfate in the buffer appears to have negative impacts on fermentation. Further in vivo research is warranted to support BSS supplementation to cattle with high dietary sulfate.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.