Abstract
Abstract An experiment was performed to determine the effects of bismuth subsalicylate (BSS) and calcium-ammonium nitrate (CAN) on in vitro fermentation of a high-concentrate (87% concentrate, DM basis) substrate. Serum bottles containing 20 mL of a 2:1 buffer:ruminal fluid inoculum and 0.2 g of substrate were incubated for 24 h. Four ruminally cannulated steers (BW = 520 ± 30 kg) were used as ruminal fluid donors and each donor was considered a block. Treatments were arranged in a 2 × 2 factorial with the following factors: BSS (0 or 0.33%, DM basis) and CAN (0 or 2.22%, DM basis). Treatments were made isonitrogenous with urea. In vitro organic matter digestibility (IVOMD) was determined in separate 100-mL centrifuge tubes. Data were analyzed using the MIXED procedure of SAS with the fixed effect of BSS, CAN, BSS × CAN, and the random effect of donor. An interaction (P < 0.01) was observed for total gas production (TGP). When CAN was included, without BSS, TGP was increased (P < 0.01); however, the combination of CAN with BSS did not affect (P = 0.85) TGP when compared to the combination of urea and BSS. Ammonia-N tended (P = 0.10) to increase when CAN was used as N source rather than urea. In vitro OM digestibility (P > 0.23) and final pH (P > 0.66) of in vitro ruminal fermentation were not affected by treatments. A tendency (P = 0.06) for an interaction regarding the production of H2S was observed; however, there were no treatment mean differences (P > 0.28). The combination of CAN and BSS did not negatively affect in vitro fermentation parameters such as OM digestion and gas production; however, a reduction in H2S with the combination of BSS and CAN may indicate potential benefits of such feeding strategies for feedlot cattle
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.