Abstract
The gene encoding S-adenosylmethionine hydrolase (SAMase) was transferred to tomato (Lycopersicon esculentum, cv. large red cherry) as a means of reducing ethylene biosynthesis in the ripening fruit. S-adenosylmethionine (SAM), the penultimate precursor to ethylene in plants. is converted to methylthioadenosine and homoserine by SAMase thereby reducing the capacity of the transgenic plant to synthesize ethylene. We have used both constitutive and fruit-specific tomato promoters to regulate SAMase gene expression. Whereas the constitutive CaMV 35S:SAMase chimeric gene expressed active SAMase and conferred a 50-60% reduction in ethylene biosynthesis in a leaf disc assay, there was little effect on fruit ethylene synthesis or postharvest ripening physiology. The use of either the tomato E4 or E8 promoters restricted SAMase expression to ripening fruit which caused a substantial (80-90%) reduction in fruit ethylene synthesis and a profound effect on fruit ripening. SAMase expression levels reached 0.1% of total cellular protein as measured on western blots using anti-SAMase monoclonal antibodies. Field trial fruit picked al the mature green stage accumulated less lycopene and were twice as firm as controls over a six week period. Vine-ripened fruit had near-normal levels of lycopene, were firmer at harvest than controls, and did not lose firmness over a two week period. Taste, vitamin content and tomatine content were superior or equivalent to control tomatoes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have