Abstract

This chapter reviews the theoretical models available to describe particle transport in typical semiconductor processing environments. Particle concentrations are assumed to be low enough so that the influence of the particle on fluid transport can be neglected; particle–particle interactions are also neglected. Under this assumption, the fluid and thermal fields are calculated first (in the absence of particles), and then used as input for subsequent particle transport calculations. The theoretical underpinnings for both the Lagrangian approach (where individual particle trajectories are calculated) and the Eulerian approach (where the particle concentration field is modeled as a continuum) are presented in the chapter. The strength of the Lagrangian formulation is in predicting particle transport resulting from external forces including particle inertia; but the current implementation cannot describe the chaotic effect of particle Brownian motion (i.e., particle diffusion) on particle transport. On the other hand, the Eulerian formulation can describe particle transport resulting from applied forces and particle diffusion, but the current implementation cannot account for particle inertia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.