Abstract

This chapter presents the failure analysis methods used for mechatronics systems. The advantages and disadvantages of resin and ceramic casing opening methods are described as well as the use precautions which are required to maintain the functional and structural integrity of the component. The technique of detecting and locating defects using photoelectron microscopy (PEM) is combined with the optical-beam-induced resistance change (OBIRCH) technique to provide direction to the analysis and determine the cause of the failure. Examples of analysis of physical defects caused by stress tests are given. These defect analyses are carried out on complete mechatronic systems and individual components. Four failure analysis cases are studied: an insulated gate bipolar transistor (IGBT) power component broken down during highly accelerated testing, a metal oxide semiconductor field effect transistor (MOSFET) transistor damaged by electrical overvoltage stress testing, a component of Gallium Nitride (GaN) technology damaged during reliability testing and a laterally diffused metal oxide semiconductor (LDMOS) component damaged during life test. The results of the various defect analyses leading to defect localization are presented (X-ray analysis, electrical analysis, optical microscopy analysis, thermal analysis, photon emission analysis and transmission electron microscopy (TEM) analysis).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.