Abstract

Acetyl-CoA reacts stoichiometrically with a cysteinyl sufhydryl group of avian liver 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase to yield acetyl-S-enzyme (Miziorko H.M., Clinkenbeard, K.D., Reed, W.D., and Lane, M.D. (1975) J. Biol. Chem. 250, 5768-5773). Evidence that acetyl-S-enzyme condenses with the second substrate, acetoacetyl CoA, to form enzyme-S-HMG-SCoA has been obtained by trapping and characterizing this putative intermediate. [14C]Acetyl-S-enzyme was incubated briefly at -25 degrees with acetoacetyl-CoA, precipitated with trichloroacetic acid, and the labeled acylated enzyme species were isolated. Performic acid oxidation of the precipitated [14C]acyl-S-enzyme intermediates produced volatile [14C]acetic acid from unreacted [14C]acetyl-S-enzyme and nonvolatile [14C]3-hydroxy-3-methyl glutaric acid from enzyme-S-[14C]HMG-SCoA. Condensation of unlabeled acetyl-S-enzyme with [14C]aceto-acetyl-CoA or acetoacetyl-[3H]CoA also produced labeled enzyme-S-HMG-SCoA. Thus, the acetyl moiety from acetyl-CoA and the acetoacetyl and CoA moieties from acetoacetyl-CoA all are incorporated into the HMG-CoA which is covalently-linked to the enzyme. Enzyme-S-[14C]HMG-SCoA was subjected to proteolytic digestion under conditions favorable for intramolecular S to N acyl transfer in the predicted cysteine-S-[14C]HMG-SCoA fragment. Performic acid oxidation of the protease-digested material yields N-[14C]HMG-cysteic acid indicating that HMG-CoA had been covalently bound to the enzyme via the -SH of an active site cysteine. An isotope trapping technique was employed to test the kinetic competence of acetyl-S-enzyme as an intermediate in the HMG-CoA synthase-catalyzed reaction. Evidence is presented which indicates that the rate of condensation of acetoacetyl-CoA with acetyl-S-enzyme to form enzyme-S-HMG-SCoA is more rapid than either the acetylation of the synthase by acetyl-CoA or the overall forward reaction leading to HMG-CoA. These observations, together with indirect evidence that hydrolysis of enzyme-S-HMG-SCoA is extremely rapid, suggest that acetylation of synthase is the rate-limiting step in HMG-CoA synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.