Abstract
The reaction of Cs[BrF6 ] with BrF5 gave the compound Cs[Br3 F16 ] with the unprecedented propeller-shaped, C3 -symmetric [(μ3 -F)(BrF5 )3 ]- anion. All other currently known fluoridobromates(V) contain only octahedral [BrF6 ]- anions, which, unlike the related [IF6 ]- anions, never exhibited stereochemical activity of the lone pair on the Br atoms. Despite the same coordination number of six for the Br atom in the [BrF6 ]- and [(μ3 -F)(BrF5 )3 ]- anions, the longer μ3 -F-Br bonds provide additional space, allowing the lone pairs on the Br atoms to become stereochemically active. Cs[Br3 F16 ] was characterized by single-crystal X-ray diffraction, Raman spectroscopy, and quantum-chemical calculations for both the solid-state compound and the isolated anion at 0 K. Intrinsic bond orbital calculations show that the μ3 -F-Br bond is essentially ionic in nature and also underpin the stereochemical activity of the lone pairs of the Br(V) atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.