Abstract

Nanowire field-effect transistors (NWFETs) have emerged as promising candidates for realization of advanced CMOS technology nodes. Due to small nanowire dimensions, NWFETs are vulnerable to the impact of process-induced random local variations, such as the line edge roughness (LER) and random dopant fluctuation (RDF). NWFETs have three different device modes, namely, the inversion mode (IM), the accumulation mode (AM), and the junctionless (JL) mode. In this paper, a 3-D quasi-atomistic LER model is used for the analysis of LER-induced mismatch in JL, IM, and AM NWFETs. We have also compared the impact of 3-D LER with that of 2-D LER. In addition, another emerging simulation methodology known as statistical impedance field method is utilized to analyze the impact of RDF on the three flavors of NWFETs. We show that JL NWFETs have much higher mismatch due to both LER and RDF than their IM and AM NWFET counterparts with otherwise identical device structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.