Abstract

Samples of a 2Mg-Fe (at.%) mixture were produced by high energy ball-milling (HEBM) with ball to powder ratio = 20:1, in an argon gas atmosphere, in 190 ml vials (sample-1) to produce powders and in 300 ml vials (sample-2) to produce plates. Both samples were cold-pressed into preforms. The preforms were then extruded at 300°C at a ram speed of 1mm/min., with the following extrusion ratios: sample-1 at 3/1 to ensure porosity and sample-2 at 5/1 to increase the adhesion of the plates. The resulting bulks from samples 1 and 2 were hydrogenated for 24h in a reactor under 15 bar of H2to produce the Mg2FeH6complex hydride, and at 11 bar of H2to produce both the complex hydride and MgH2hydride. In addition, sample-1 was severely temperature-hydrogen cycled to verify its microstructural stability and the influence of grain size on the sorption properties. XRD patterns showed Mg(hc), Fe(ccc) and Mg2FeH6in both samples, and sample-2 also contained MgH2and MgO (attributed to processing contamination). DSC results demonstrated that the initial desorption temperature of sample-1 was lower than that of sample-2. However, sample-2 showed faster desorption kinetics, presenting a desorption peak about 73°C below that of sample-1. This could be attributed to the activation/catalyst effect of the MgH2hydride. The improvement in sorption properties was attributed mainly to porosity and to the type of employed catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.