Abstract

Abstract Hot extrusion processing was employed to produce 2Mg–Fe bulk mixtures for hydrogen storage. 2Mg–Fe powder mixtures were prepared by high-energy ball milling. These mixtures were cold pressed into cylindrical pre-forms, which were then processed by hot extrusion (at 300 °C) to produce bulks. In this work, we analyzed the influence of the extrusion ratio (3/1, 5/1 and 7/1) on the sorption properties of the bulks. The nanometric grain size remained unaltered after all hot extrusion conditions. More porous bulks were produced at an extrusion ratio of 3/1. In the first cycle of hydrogenation, the sample processed at 3/1 absorbed more hydrogen (4 wt% of H) than the precursor powders (3 wt% of H). The results showed that the desorption temperature of bulks were very similar to that of 2Mg–Fe powders, which is good considering the lower surface area of bulks, and that samples with Fe in excess presented lower desorption temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.