Abstract

Let $G$ be an undirected graph with vertex-set $V(G)$ and edge-set $E(G)$, respectively. A set $S\subseteq V(G)$ is a $2$-locating set of $G$ if $\big|[\big(N_G(x)\backslash N_G(y)\big)\cap S] \cup [\big(N_G(y)\backslash N_G(x)\big)\cap S]\big|\geq 2$, for all \linebreak $x,y\in V(G)\backslash S$ with $x\neq y$, and for all $v\in S$ and $w\in V(G)\backslash S$, $\big(N_G(v)\backslash N_G(w)\big)\cap S \neq \varnothing$ or $\big(N_G(w)\backslash N_G[v]\big) \cap S\neq \varnothing$. In this paper, we investigate the concept and study 2-locating sets in graphs resulting from some binary operations. Specifically, we characterize the 2-locating sets in the join, corona, edge corona and lexicographic product of graphs, and determine bounds or exact values of the 2-locating number of each of these graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call