Abstract

Dactylellina haptotyla is a typical nematode-trapping fungus that has garnered the attention of many scholars for its highly effective lethal potential for nematodes. Secondary metabolites play an important role in D. haptotyla-nematode interactions, but which metabolites perform which function remains unclear. We report the metabolic functions based on high-quality, chromosome-level genome assembly of wild D. haptotyla YMF1.03409. The results indicate that a large variety of secondary metabolites and their biosynthetic genes were significantly upregulated during the nematode-trapping stage. In parallel, we identified that 2-furoic acid was specifically produced during nematode trapping by D. haptotyla YMF1.03409 and isolated it from fermentation production. 2-Furoic acid demonstrated strong nematicidal activity with an LD50 value of 55.05 µg/mL against Meloidogyne incognita at 48 h. Furthermore, the pot experiment showed that the number of galls of tomato root was significantly reduced in the experimental group treated with 2-furoic acid. The considerable increase in the 2-furoic acid content during the infection process and its virulent nematicidal activity revealed an essential synergistic effect during the process of nematode-trapping fungal infection. IMPORTANCE Dactylellina haptotyla have significant application potential in nematode biocontrol. In this study, we determined the chromosome-level genome sequence of D. haptotyla YMF1.03409 by long-read sequencing technology. Comparative genomic analysis identified a series of pathogenesis-related genes and revealed significant gene family contraction events during the evolution of D. haptotyla YMF1.03409. Combining transcriptomic and metabolomic data as well as in vitro activity test results, a compound with important application potential in nematode biocontrol, 2-furoic acid, was identified. Our result expanded the genetic resource of D. haptotyla and identified a previously unreported nematicidal small molecule, which provides new options for the development of plant biocontrol agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call