Abstract
V.A. Rohlin asked in 1949 whether 2-fold mixing implies 3-fold mixing for a stationary process (ξ i )i2ℤ, and the question remains open today. In 1978, F. Ledrappier exhibited a counterexample to the 2-fold mixing implies 3-fold mixing problem, the socalled 3-dot system, but in the context of stationary random fields indexed by ℤ2. In this work, we first present an attempt to adapt Ledrappier's construction to the onedimensional case, which finally leads to a stationary process which is 2-fold but not 3-fold mixing conditionally to the σ-algebra generated by some factor process. Then, using arguments coming from the theory of joinings, we will give some strong obstacles proving that Ledrappier's counterexample can not be fully adapted to one-dimensional stationary processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.