Abstract
Two-dimensional layered transition metal dichalcogenides, MoSe2 and MoS2, have drawn potential attention in the field of water splitting. Coupling of MoS2 and MoSe2 provides a sustainable route to improve the electrocatalytic activity for the hydrogen evolution reaction (HER). Here, the heterostructures of thin sheets (ts) of MoSe2 and MoS2 are combined to develop the MoSe2-ts@MoS2-ts heterostructure via multiple-step methodology. First, thin sheets of MoSe2 are synthesized following the stepwise hydrothermal method. After the successful synthesis of MoSe2-ts, MoS2-ts is synthesized on it to develop the heterostructure: MoSe2-ts@MoS2-ts. By tuning the amount of MoS2-ts and MoSe2-ts in the heterostructure separately, the optimum condition is obtained for HER. The unique heterostructure is efficient for HER under wide pH conditions like 1 M KOH, pH-7 phosphate buffer, 3.5% saline water, and finally 0.5 M H2SO4. MoSe2-ts@MoS2-ts can generate 10 mA/cm2 current density under the application of -0.186 V vs RHE with a low Tafel value of 71 mV/decade. The formation of the heterojunction plays an essential role in facilitating charge transportation. Furthermore, the heterostructure provides the more active sites for the adsorption of hydrogen to generate H2. An excess amount of any of the bare counter parts in the heterostructure leads to a decrease in electrocatalytic efficiency because of the lowered heterojuction formation. MoSe2-ts@MoS2-ts has very high stability during the electrocatalytic reaction, which is determined from 1000 consecutive cycles and a 24 h prolonged scan. MoSe2-ts@MoS2-ts can generate 147 μmol of H2 in ∼50 min of reaction time with 100% Faradaic efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.