Abstract
Computer simulation is used to establish the impact of design parameters on the subthreshold characteristics, hot carrier injection, and high frequency performance of Si-SiGe FET's. The results indicate that by fully grading the Ge content in the channel of a MOSFET, short channel effects are reduced and high frequency performance is improved as compared to devices with uniform Ge channels. A cutoff frequency of 38 GHz and a maximum frequency of oscillation of 160 GHz are predicted for fully graded p-channel MOSFET's with 0.25 /spl mu/m gate lengths. Energy balance simulation reveals that hot carrier injection at the Si-SiO/sub 2/ interface is considerably suppressed if a fully graded channel is employed.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.