Abstract

AbstractGraphene analog MXenes are the best options for interface engineering traditional thermoelectric materials. For the first time, a composite‐engineered TEG device composed of heavily doped bismuth and antimony telluride with incorporated Ti3C2Tx (MXene) nanoflakes is developed. Incorporated MXenes improved the electrical conductivity by carrier injection and reduces thermal conductivity by interfacial phonon scattering in both composites. The fabricated composite TEG device resulted in a maximum power of 1.14 mW and a power density of 6.1 mWcm−2. The fabricated composite TEG also demonstrates strong power generation stability and durability. Added MXenes improve the mechanical stability by employing a dispersion‐strengthening mechanism. Conclusively, the developed composite‐engineered TEG device is a facile and efficiency‐improving option for next‐generation bismuth telluride‐based commercial TEG devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call