Abstract
AbstractThe ongoing advancements and growing adoption of infrared detection technology have spurred a tremendous amount of interest in thermal camouflage technology. Various approaches are employed to develop infrared camouflage materials capable of manipulating emissivity or surface temperature. However, the range of thermal radiation regulation implemented by these materials is still somewhat limited. In this paper, a combined emissivity and temperature regulation strategy that integrates a thermoelectric device (TED) and a thermochromic structure is proposed. By utilizing this strategy, it becomes possible to simultaneously control the surface temperature and the emissivity without needing additional complex excitation. As a concept demonstration, large tunabilities of 0.38 for long‐wave infrared (8–14 µm) emittance and 87 °C for surface temperature are observed, resulting in a prominent tunability of the thermal radiation temperature that is 15.4 °C greater than that of a conventional TED with constant emissivity. This work aims to introduce a new design paradigm for future thermal radiation management and camouflage techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.