Abstract

Nowadays, with the rapid information explosion connected to all devices, there is a huge demand for effectively processing big data. In particular, conventional von Neumann computing system with physically separated processing and memory units face significant problems in dealing with massive unstructured data such as sound, images, and video because of a von Neumann bottleneck. As a key feature of parallel operations, neuromorphic computing systems can analyze massive unstructured data in a time and energy efficient manner. However, critical issues related to reliability and variability of nonlinearity and asymmetric weight update, have been great challenges in the implementation of artificial synaptic device in practical neuromorphic hardware system. Also, hardware systems enabling artificial neural networks in-situ personal data are essential for adaptive wearable neuromorphic edge computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.