Abstract

In the present study, the free vibration analysis of a size-dependent micro composite Timoshenko beam model reinforced by various distributions of carbon nanotubes under temperature changes and two-dimensional magnetic field is investigated based on modified strain gradient theory. Also, the effects of environment are simulated by orthotropic elastic foundation and it is assumed that the material properties are temperature-dependent. Mathematical formulations are obtained using Hamilton's principle and the governing equations of motion are derived based on energy approach and variation method. These equations are solved using semi-analytical and numerical methods such as Navier's type solution, finite element method and generalized differential quadrature method for various boundary conditions. The obtained results of this study are compared with the other previous researches and there is a good agreement between them. The main purpose of this work is the comparison of various solution methods on the problem outputs. Thus, the results are compared together and the effects of solution approach on the dimensionless natural frequencies is developed. Moreover, the effects of length-to-thickness ratio, magnetic field, temperature changes, elastic foundation and carbon nanotubes volume fractions on the dimensionless natural frequencies are studied. The results of this article demonstrate that the micro composite Timoshenko beam reinforced by FG-O and FG-X CNTs have lowest and highest dimensionless natural frequency, respectively. It is investigated that the dimensionless natural frequency enhances by increasing the magnetic field in x and z-directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.