Abstract

Resistivity ρ(T) and magnetoresistance (MR), ((ρ(H)-ρ(H=0))/ρ(H=0), of the entangled single wall carbon nanotube (SWCN) network are studied. The temperature dependence of the resistivity shows the negative dρ/dT from T=4.2K to 300K, which fits well to the 2-dimensional variable range hopping (VRH) (ρ(T)=ρ 0exp((T 0/T) 1/3)) formula with T 0= 259.2 K. The overall MR shows a negative H 2 behavior at low magnetic field. At T≤3.8K and high magnetic field, the negative MR turns to be positive. The positive MR becomes saturating for H>10 Tesla. The negative MR with a positive upturn can be decomposed into a positive contribution from the 2-dimensional spin-dependent VRH and a negative contribution from the 2-dimensional weak localization (WL). Moreover we report the interesting chain-like ring structures found from the by-products of SWCNs synthesized by the arc-plasma method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.