Abstract

DMSO-water mixtures provide an intriguing hydrogen-bonding environment which has been a subject of various theoretical and experimental investigations. The structural dynamics of aqueous DMSO solutions has been investigated, using nitrosyl stretch of sodium nitroprusside (SNP, Na2[Fe(CN)5NO]) as a local vibrational probe, with the help of infrared (IR) absorption spectroscopy, vibrational pump-probe spectroscopy, and two-dimensional IR spectroscopy (2D-IR). Fourier transform infrared spectra of the nitrosyl stretch of SNP reveals that both the peak position and spectral broadening are very sensitive to the composition of the DMSO-water mixture and the subsequent structural changes occurring due to the addition of DMSO to water. The vibrational lifetime of the nitrosyl stretch displays two different linear variation regimes as a function of mole fraction of DMSO which has been assigned presumably to two different predominant structures at these compositions. However, the rotational depolarization measurements show that the reorientational times follow a bell-shaped profile, imitating the changes in the composition-dependent physical properties (viscosity) of DMSO-water solvent mixtures. To get a holistic picture of the system, 2D-IR spectroscopy of the NO stretch of SNP has been employed to study time scales of hydrogen-bond reorganization dynamics existing at different compositions. The analysis of frequency-frequency correlation function (FFCF) decay times reveal that the dynamics gets slower in intermediate DMSO concentrations than that of pure DMSO or pure water. A careful analysis reveals two anomalous regions of hydrogen-bond dynamics: XDMSO ∼0.2 and 0.4, which indicates that different hydrogen-bonded structures exist in these regions that can be effectively probed by SNP which has remained mostly elusive to previous vibrational probe-based investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call