Abstract

7-Hydroxy-1-naphthalenesulfonate (2-naphthol-8-sulfonate) monoanion demonstrates proton transfer in the lowest excited singlet state in DMSO–water mixtures as well as in pure water. The dissociation reaction of the directly excited monoanion is strongly solvent-dependent, and independent of solution acidity. The reprotonation of the conjugate base, however, depends predominantly on the acidity of the solution and only on the continuum properties of the solvent. The separability of the dissociation and reprotonation reactions, using steady-state methodology, allows the reprotonation to be treated independent of the dissociation. The linear relationship between the ratio of the relative fluorescence efficiencies of acid and conjugate base, and the hydrogen ion concentration is obtained only if proper Brönsted activity factors are included in the relationship. These factors can be calculated from classical electrostatics and are the fourth powers of the activity coefficients necessary to convert the formal hydrogen ion concentration to hydrogen ion activity. Using this approach, pH was calculated from hydrogen ion concentration in DMSO–water solutions, containing a mole fraction of DMSO up to about 0.4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.