Abstract

Air-writing is a modern human–computer interaction technology that allows participants to write words or letters with finger or hand movements in free space in a simple and intuitive manner. Air-writing recognition is a particular case of gesture recognition in which gestures can be matched to write characters and digits in the air. Air-written characters show extensive variations depending on the various writing styles of participants and their speed of articulation, which presents quite a difficult task for effective character recognition. In order to solve these difficulties, this current work proposes an air-writing system using a web camera. The proposed system consists of two parts: alphabetic recognition and digit recognition. In order to assess our proposed system, two character datasets were used: an alphabetic dataset and a numeric dataset. We collected samples from 17 participants and asked each participant to write alphabetic characters (A to Z) and numeric digits (0 to 9) about 5–10 times. At the same time, we recorded the position of the fingertips using MediaPipe. As a result, we collected 3166 samples for the alphabetic dataset and 1212 samples for the digit dataset. First, we preprocessed the dataset and then created two datasets: image data and padding sequential data. The image data were fed into the convolution neural networks (CNN) model, whereas the sequential data were fed into bidirectional long short-term memory (BiLSTM). After that, we combined these two models and trained again with 5-fold cross-validation in order to increase the character recognition accuracy. In this work, this combined model is referred to as a hybrid deep learning model. Finally, the experimental results showed that our proposed system achieved an alphabet recognition accuracy of 99.3% and a digit recognition accuracy of 99.5%. We also validated our proposed system using another publicly available 6DMG dataset. Our proposed system provided better recognition accuracy compared to the existing system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.